
The Illustrated GRPO: A Detailed and Pedagogical Explanation of

GRPO Algorithm

Abderrahman Skiredj
abderrahman.skiredj@um6p.ma

April 2025

Introduction

Adapting large language models (LLMs) to specific tasks often involves prompting, Retrieval-Augmented
Generation (RAG), or agentic systems. Prompting suits quick, general tasks but falters in complex rea-
soning or specialization. RAG excels with external knowledge but struggles to teach new skills or control
output style. Agentic systems fit dynamic goals yet can overcomplicate simpler needs. Group Relative
Policy Optimization (GRPO), a DeepSeek reinforcement learning method, is ideal when deep domain ex-
pertise, precise style and tone control, specific output formatting, or debiasing are required—particularly
for reasoning-intensive tasks without clear answers, as shown in DeepSeekMath. This paper offers a clear,
comprehensive guide to GRPO, blending theory, math, and practical steps. Where existing resources scatter
or omit details, we provide a unified, pedagogical resource to unlock GRPO’s potential for fine-tuning LLMs
effectively.

The paper is organized into four main sections to provide a comprehensive understanding of GRPO
from theory to practice. The first section offers a theoretical deep dive, detailing the algorithm’s me-
chanics with rigor and intuitive explanations. The second section serves as a practical tutorial, guiding
readers through a quick application of GRPO using the TRL library with simplified steps and examples. The
third section presents a simplified, didactic implementation of GRPO, designed for clarity and edu-
cational purposes, using a small model and basic prompts. Finally, the fourth section explores an optimized,
industrial-grade implementation from the TRL library, mapping theoretical steps to production-
ready code.

1 GRPO algorithm: Deep dive

Overview of the GRPO Algorithm
Group Relative Policy Optimization (GRPO) fine-tunes a language model by iteratively improving its policy
through group-based reward comparisons. The algorithm proceeds as follows:

1. Sample G outputs per query from a batch using the current policy πθold .

2. Evaluate each output with a reward model to assign scalar rewards ri.

3. Compute advantages Ai by normalizing rewards relative to the group’s mean and standard deviation.

4. Calculate a surrogate loss using clipped probability ratios between the current policy πθ and old policy,
with a KL penalty for stability.

5. Update the policy parameters θ via backpropagation to maximize expected rewards.

These steps are illustrated in Figure 1, which applies them to fine-tune an LLM on mathematical reasoning.
Let us now delve into the details of each step.

1

Figure 1: Overview of the GRPO algorithm workflow.

Step 1: Prepare a Batch of Training Queries
Take a batch of training queries {q1, q2, . . . , qB}, where B is the batch size. These are questions or prompts
the model will respond to.

Step 2: Sample G Outputs for a Single Query
For simplicity, consider a single query q from the batch. Using the current policy model with parameters
θold (denoted πθold), generate G different outputs {o1, o2, . . . , oG}. Each output oi is a sequence of tokens

oi = [oi,1, oi,2, . . . , oi,|oi|],

where |oi| is the length of the sequence.

Why G Outputs?: Sampling multiple outputs allows GRPO to compare them relative to each other, forming
a group-based baseline for rewards.

Step 3: Calculate Rewards and Advantages

• Reward Assignment: Pass each output oi to a reward model, which assigns a scalar reward ri based
on quality (e.g., accuracy, coherence). You get

{r1, r2, . . . , rG}.

To make this more concrete, DeepSeek uses a rule-based strategy tailored to each task, such as math
or coding. The reward ri for an output oi is computed using a weighted combination:

ri = α · accuracy score + β · format score,

where α and β are task-specific weights balancing correctness and structure.

For the accuracy score, math tasks use regular expressions to extract the final answer and compare it to
the ground truth (1 if correct, 0 otherwise). Coding tasks run the code in a sandbox and assign a score

2

based on how many test cases pass. The format score, on the other hand, checks whether the output
follows the expected structure—such as including reasoning within specific tags like <think>—and is
typically binary (1 if well-structured, 0 if not).

• Compute Statistics:

– Mean reward: r̄ = 1
G

∑G
i=1 ri

– Standard deviation of rewards: σr =
√

1
G

∑G
i=1(ri − r̄)2

• Compute Advantage: For each output oi, the advantage is:

Ai =
ri − r̄

σr + ϵ

Terms:

– ri: Reward for output oi.

– r̄: Mean reward across the G outputs.

– σr: Standard deviation of rewards (measures variability).

– ϵ: Small constant (e.g., 10−8) to avoid division by zero if σr = 0.

The idea is that by normalizing the reward relative to the group, indicating how much better or worse
oi is compared to the average, the model learns to favor responses with Ai > 0 and suppress those
with Ai < 0. For instance, if Ai = 0.94, the model increases the likelihood of generating that (correct)
response.

Note that in standard GRPO (outcome supervision), the advantage Ai is the same for all tokens oi,t
in output oi. So, Ai,t = Ai for all t = 1, 2, . . . , |oi|. This is because the reward ri is given for the entire
output oi, not per token or step.

Exception: In process supervision (not standard GRPO), rewards are given per reasoning step, and
advantages could vary per token or segment. But for this explanation, we assume outcome supervision,
so Ai,t = Ai.

Step 4: Compute the Surrogate Loss

• Probability Ratio: For each token oi,t in output oi, compute the ratio of probabilities between the
current policy πθ and the old policy πθold :

ratioi,t =
πθ(oi,t | q, oi,<t)

πθold(oi,t | q, oi,<t)

Terms:

– πθ(oi,t | q, oi,<t): Probability of generating token oi,t given query q and previous tokens oi,<t =
[oi,1, . . . , oi,t−1] under the current policy.

– πθold(oi,t | q, oi,<t): Same, but under the old policy.

The idea is to measure how much the policy has changed for that token.

• Clipped Objective Define the clipped term:

g(ϵ, Ai) = clip(ratioi,t, 1− ϵ, 1 + ϵ) ·Ai

Terms:

– clip(x, a, b): Clamps x between a and b (i.e., max(a,min(b, x))).

– ϵ: Hyperparameter (e.g., 0.2) controlling the clipping range.

3

– Ai: Advantage for output oi.

The idea is to limit large policy updates for stability.

• Loss per Token: For each token oi,t:

Li,t = min (ratioi,t ·Ai, g(ϵ, Ai))

Terms:

– ratioi,t ·Ai: Unclipped objective (encourages policy to favor high-advantage outputs).

– g(ϵ, Ai): Clipped objective (caps the update size).

The idea is to take the minimum to conservatively update the policy: The clipping restricts the
policy update ratio to [1 − ϵ, 1 + ϵ] to avoid large shifts from the old policy. This in particular limits
overconfident updates.

Example with ϵ = 0.2: if πθ(oi|q) = 0.9, πold(oi|q) = 0.5, then ratio = 1.8→ clip to 1.2. If new policy
gives 0.2, then 0.2/0.5 = 0.4→ clip to 0.8.

• Total Surrogate Loss: Average over all tokens and outputs:

LGRPO(θ) =
1

G

G∑
i=1

1

|oi|

|oi|∑
t=1

Li,t

Terms:

– 1
G : Normalizes across the G outputs.

– 1
|oi| : Normalizes across the length of each output oi.

– Li,t: Loss contribution from each token.

• KL Divergence Penalty: Add a penalty to prevent large deviations from a reference policy πref

(e.g., initial policy):
Ltotal(θ) = LGRPO(θ)− βDKL[πθ ||πref]

Terms:

– DKL[πθ ||πref]: KL divergence, approximated per token as:

DKL ≈
∑
t

πref(oi,t | q, oi,<t) log
πref(oi,t | q, oi,<t)

πθ(oi,t | q, oi,<t)

– β: Hyperparameter (e.g., 0.01) controlling penalty strength.

The idea is to ensure stability by keeping πθ close to πref. A KL divergence penalty keeps the model’s
outputs near the original distribution, preventing extreme shifts while still allowing controlled explo-
ration and refinement.

The β parameter controls the strength of the KL divergence penalty. A higher β keeps the policy
close to the reference, ensuring stability but slowing exploration. A lower β allows faster adaptation
and more deviation, but risks instability or reward hacking. The original DeepSeekMath paper used
β = 0.04.

Step 5: Backpropagate and Update the Policy

• Gradient Computation: Compute the gradient of Ltotal(θ) with respect to θ:

∇θLtotal(θ)

4

• Update: Use an optimizer (e.g., Adam) to adjust θ:

θ ← θ − η∇θLtotal(θ)

Terms:

– η: Learning rate (e.g., 10−5).

The idea is to minimize the loss, effectively maximizing the expected reward by adjusting token prob-
abilities.

Summary of Key Formulas

1. Advantage: Ai =
ri−r̄
σr+ϵ , uniform for all tokens in oi.

2. Probability Ratio: ratioi,t =
πθ(oi,t|q,oi,<t)

πθold
(oi,t|q,oi,<t)

.

3. Clipped Term: g(ϵ, Ai) = clip(ratioi,t, 1− ϵ, 1 + ϵ) ·Ai.

4. Token Loss: Li,t = min (ratioi,t ·Ai, g(ϵ, Ai)).

5. Total Loss: Ltotal(θ) =
1
G

∑G
i=1

1
|oi|

∑|oi|
t=1 Li,t − βDKL[πθ ||πref].

Limitations & Challenges of GRPO: The following passage is taken directly from the HuggingFace
Reasoning Course [5]:

• Generation Cost: Generating multiple completions (4-16) for each prompt increases computational
requirements compared to methods that generate only one or two completions.

• Batch Size Constraints: The need to process groups of completions together can limit effective batch
sizes, adding complexity to the training process and potentially slowing down training.

• Reward Function Design: The quality of training heavily depends on well-designed reward functions.
Poorly designed rewards can lead to unintended behaviors or optimization for the wrong objectives.

• Group Size Tradeoffs: Choosing the optimal group size involves balancing diversity of solutions against
computational cost. Too few samples may not provide enough diversity, while too many increase
training time and resource requirements.

• KL Divergence Tuning: Finding the right balance for the KL divergence penalty requires careful
tuning: too high and the model won’t learn effectively, too low and it may diverge too far from its
initial capabilities.

2 Practical Tutorial Using TRL Library

In addition to the theoretical aspects described above, we draw inspiration from the excellent practical
tutorial available online [2]. It makes use of the TRL implementation of the GRPO Algorithm [1]. Here, we
simplify the content to focus on the most important components.

Data Preparation

The tutorial uses the GSM8K dataset, a collection of math word problems designed to test reasoning skills.
Each entry consists of a question and an answer, with the final numerical solution typically marked by ####

in the answer text.

To give a clearer picture, here are two sample entries from the dataset:
Sample 1:

• Question: Kawtar sold clips to 48 of her friends in April, and then she sold half as many clips in May.
How many clips did Kawtar sell altogether in April and May?

5

• Answer: Kawtar sold 48/2 = 24 clips in May. Kawtar sold 48+24 = 72 clips altogether in April and
May. #### 72

Sample 2:

• Question: Weng earns $12 an hour for babysitting. Yesterday, she just did 50 minutes of babysitting.
How much did she earn?

• Answer: Weng earns 12/60 = $0.2 per minute. Working 50 minutes, she earned 0.2 × 50 = $10. ####
10

The first step is to extract the final answer (e.g., “72” or “10”) for evaluation. We define a function to
do this:

1 def extract_hash_answer(text):

2 if "####" not in text:

3 return None

4 return text.split("####")[1].strip()

For instance, applying this to Sample 1’s answer yields “72”.

Next, we define a system prompt to guide the model’s output format, encouraging it to show its reasoning
and provide a solution within specific tags:

1 reasoning_start = "<start_working_out>"

2 reasoning_end = "<end_working_out>"

3 solution_start = "<SOLUTION>"

4 solution_end = "</SOLUTION>"

5

6 system_prompt = f"""You are given a problem.

7 Think about the problem and provide your working out.

8 Place it between {reasoning_start} and {reasoning_end}.

9 Then, provide your solution between {solution_start}{solution_end}"""

The dataset is then mapped to pair each question with this system prompt and the extracted answer,
preparing it for GRPO training.

Reward Functions

Reward functions are the heart of GRPO, as they evaluate the quality of the model’s outputs and drive
policy optimization.

The tutorial defines multiple reward functions, but we highlight two key examples here for clarity.

The first, match format exactly, awards points if the output adheres precisely to the expected structure,
including both reasoning and solution sections:

1 def match_format_exactly(completions, **kwargs):

2 scores = []

3 for completion in completions:

4 score = 0

5 response = completion[0]["content"]

6 if match_format.search(response) is not None:

7 score += 3.0

6

8 scores.append(score)

9 return scores

Here, match format is a regular expression ensuring the presence of all required tags in the correct order
(defined earlier in the code, omitted here for brevity). An output like:

<start working out>Let’s think!<end working out><SOLUTION>42</SOLUTION>

would score 3.0, while a malformed response would score 0.

The second function, check answer, evaluates the correctness of the solution by comparing the extracted
answer to the ground truth:

1 def check_answer(prompts, completions, answer, **kwargs):

2 scores = []

3 for completion, true_answer in zip(completions, answer):

4 score = 0

5 response = completion[0]["content"]

6 guess = match_format.search(response).group(1) if match_format.search(response) else None

7 if guess == true_answer:

8 score += 3.0

9 elif guess.strip() == true_answer.strip():

10 score += 1.5

11 scores.append(score)

12 return scores

This function awards 3.0 for an exact match (e.g., “72” vs. “72”), 1.5 for a match ignoring whitespace,
and 0 otherwise. Additional reward functions (e.g., partial format matching or numerical closeness) enhance
flexibility.

Training with GRPO

Training is performed using the GRPOTrainer from the TRL library [1]. The Gemma3 model, enhanced
with LoRA adapters via Unsloth for efficient fine-tuning, is trained on the prepared dataset with the defined
reward functions. Key hyperparameters are set as follows:

1 from trl import GRPOConfig, GRPOTrainer

2

3 training_args = GRPOConfig(

4 learning_rate=5e-6,

5 per_device_train_batch_size=1,

6 num_generations=4, # Number of outputs G per query

7 max_steps=50,

8 max_prompt_length=256,

9 max_completion_length=768,

10 output_dir="outputs",

11)

12

13 trainer = GRPOTrainer(

14 model=model,

15 processing_class=tokenizer,

16 reward_funcs=[match_format_exactly, check_answer],

17 args=training_args,

7

18 train_dataset=dataset,

19)

20

21 trainer.train()

Here, num generations=4 corresponds to G in our theoretical explanation, generating four outputs per
query to compute group-based advantages.

Some Practical tips include:

• num generation: Defines group size in GRPO (completions per prompt); 2-3 lacks diversity, 4-16
balances efficiency and variety, larger boosts learning but costs more—adjust based on resources and
task complexity

• Memory: Tune per device train batch size and gradient accumulation steps to fit GPU mem-
ory; enable use vllm=True for faster generation if supported

• Monitoring: Track training metrics—reward (average across completions), reward std (variation
within groups), and kl (divergence from reference model)

This concludes the preparation and training procedure, where reward-guided optimization plays a central
role in refining the model’s ability to reason and answer accurately.

3 Simple & Didactical Implementation of the GRPO Algorithm

In this section, we present a simplified yet functional implementation of the GRPO (Generalized Reward
Policy Optimization) algorithm, fully taken from the HuggingFace Reasoning Course [5], but rearranged
for improved pedagogical clarity. It bridges the theoretical framework outlined in Section 1 with concrete
code, using the small model Qwen/Qwen2-Math-1.5B and a basic math prompt for focus and accessibility.
In the subsequent section, we explore the optimized, industrial-grade implementation of GRPO provided by
HuggingFace’s TRL library, illustrating how the same algorithm scales to production-ready use cases.

Loading the Model and Generating Responses

This stage corresponds to Step 1 and Step 2 of the theoretical overview. We load a pre-trained language
model and generate multiple responses for a batch of prompts.

We use two prompts:

• q1: ”Solve y = 2x+ 1 for x = 2, y =” (correct answer: 5)

• q2: ”Solve y = 2x+ 1 for x = 4, y =” (correct answer: 9)

Here, the batch size B = 2 (two queries), and we generate G = 4 responses per query, totaling 8 responses.

1 import torch

2 from transformers import AutoModelForCausalLM, AutoTokenizer

3

4 # Load the model and tokenizer

5 model_name = "Qwen/Qwen2-Math-1.5B"

6 model = AutoModelForCausalLM.from_pretrained(model_name)

7 tokenizer = AutoTokenizer.from_pretrained(model_name)

8 model.eval()

9

10 # Move model to GPU if available

8

11 device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

12 model.to(device)

13

14 # Input prompts (batch of 2 queries)

15 prompts = [

16 "Solve y = 2x + 1 for x = 2, y = ", # Correct answer: 5

17 "Solve y = 2x + 1 for x = 4, y = " # Correct answer: 9

18]

19 inputs = tokenizer(prompts, return_tensors="pt", padding=True)

20 input_ids = inputs["input_ids"].to(device) # Shape: (2, prompt_len)

21 attention_mask = inputs["attention_mask"].to(device)

22

23 # Generate 4 responses per prompt (B=2, G=4, total 8 responses)

24 batch_size = len(prompts) # 2

25 num_generations = 4

26 outputs = model.generate(

27 input_ids=input_ids, # Shape: (2, prompt_len)

28 attention_mask=attention_mask,

29 max_new_tokens=1, # Single-token response

30 num_return_sequences=num_generations, # 4 per prompt

31 do_sample=True,

32 top_k=10,

33 temperature=0.7,

34 pad_token_id=tokenizer.eos_token_id,

35 return_dict_in_generate=True,

36 output_scores=True,

37)

Comments:

• Model Loading: We load Qwen/Qwen2-Math-1.5B and its tokenizer, representing the current policy
πθold (Step 1). The model is set to evaluation mode and moved to the GPU if available.

• Prompt Preparation: We define a batch of B = 2 prompts, tokenized into input ids with shape
(2,prompt len), matching Step 1’s batch of queries {q1, q2}.

• Response Generation: The model.generate call produces G = 4 responses per prompt. With
input ids of shape (2,prompt len) and num return sequences=4, it generates 2×4 = 8 total responses
(Step 2). The max new tokens=1 ensures single-token outputs (e.g., ”5”, ”9”). Sampling parameters
(top k=10, temperature=0.7) ensure diversity. Example output:

– q1: [5, 6, 7, 5]

– q2: [10, 2, 9, 9]

Calculating Rewards and Advantages

This stage implements Step 3: assigning rewards, computing group-wise statistics, and calculating advan-
tages.

For the generated responses:

• q1 (correct answer: 5): [5, 6, 7, 5]

• q2 (correct answer: 9): [10, 2, 9, 9]

We use a binary reward: ri = 1 if correct, 0 otherwise:

9

• q1 rewards: [1, 0, 0, 1]

• q2 rewards: [0, 0, 1, 1]

1 # Rewards for the 8 responses (flattened)

2 rewards = torch.tensor([1, 0, 0, 1, 0, 0, 1, 1], dtype=torch.float32) # Shape: (8,)

3 # Note: In practice, rewards are computed by comparing generated tokens to correct answers (5, 9)

4

5 # Group rewards: Shape (B, G) = (2, 4)

6 rewards_grouped = rewards.view(batch_size, num_generations)

7

8 # Mean per group: Shape (B,) = (2,)

9 mean_grouped_rewards = rewards_grouped.mean(dim=1)

10

11 # Std per group: Shape (B,) = (2,)

12 std_grouped_rewards = rewards_grouped.std(dim=1)

13

14 # Broadcast to match rewards: Shape (8,)

15 mean_grouped_rewards = mean_grouped_rewards.repeat_interleave(num_generations)

16 std_grouped_rewards = std_grouped_rewards.repeat_interleave(num_generations)

17

18 # Advantages: Shape (8,)

19 advantages = (rewards - mean_grouped_rewards) / (std_grouped_rewards + 1e-8)

20

21 # Reshape to match logits: Shape (8, 1)

22 advantages = advantages.unsqueeze(1)

Explanation:

• Reward Assignment: Rewards are assigned per query: q1 (answer: 5) gets [1, 0, 0, 1]; q2 (answer:
9) gets [0, 0, 1, 1]. In practice, we’d decode the generated tokens and compare them to the correct
answers (Step 3).

• Grouping: rewards grouped becomes (2, 4):[
1 0 0 1
0 0 1 1

]
• Statistics: Mean: [0.5, 0.5], Std: [0.5774, 0.5774]

• Broadcasting: Mean and std are repeated: [0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5]

• Advantages: Ai = ri−r̄
σr+10−8 , e.g., A1 = 1−0.5

0.5774 ≈ 0.8659, yielding [0.8659, -0.8660, -0.8660, 0.8659,
-0.8660, -0.8660, 0.8659, 0.8659]

Updating the Policy

This stage implements Step 4 (surrogate loss) and Step 5 (policy update), using advantages to refine the
model.

1 import torch.nn.functional as F

2

3 # Assume log probs are available (Shape: (8, 1))

4 # In practice, computed by passing outputs through old and new models

10

5 per_token_logps = ... # Old policy log probs

6 new_per_token_logps = ... # New policy log probs

7

8 # Probability ratio: Shape (8, 1)

9 ratio = torch.exp(new_per_token_logps - per_token_logps)

10

11 # Clipping

12 eps = 0.2

13 pg_losses1 = -advantages * ratio

14 pg_losses2 = -advantages * torch.clamp(ratio, 1.0 - eps, 1.0 + eps)

15 pg_loss_max = torch.max(pg_losses1, pg_losses2)

16

17 # KL penalty: Shape (8, 1)

18 per_token_kl = F.kl_div(

19 F.log_softmax(new_per_token_logps, dim=-1),

20 F.softmax(per_token_logps, dim=-1),

21 reduction="none",

22).sum(dim=-1, keepdim=True)

23

24 # Total loss

25 beta = 0.01

26 per_token_loss = pg_loss_max + beta * per_token_kl

27 total_loss = per_token_loss.mean()

28

29 # Update model

30 optimizer = torch.optim.Adam(model.parameters(), lr=1e-5)

31 optimizer.zero_grad()

32 total_loss.backward()

33 optimizer.step()

Explanation:

• Ratio: πθ

πθold

guides the policy shift (Step 4).

• Clipped Loss: Combines unclipped and clipped terms, stabilized with ϵ = 0.2.

• KL Penalty: Regularizes with β = 0.01.

• Update: Adam optimizes θ to maximize rewards (Step 5).

4 Deep Dive into the TRL Implementation of the GRPO Algo-
rithm

In this section, we explore how the GRPO algorithm is implemented in the TRL library’s GRPOTrainer

class. The difference between the previous section is that the following code is an optimized and industrial-
grade implementation of GRPO provided by HuggingFace’s TRL library. Each step outlined in Section 1 is
meticulously mapped to specific methods and code segments, providing a clear bridge between theory and
practice. We use the code from the TRL library (version as of April 2025).

Step 1: Prepare a Batch of Training Queries

What It Does in Theory: The first step involves preparing a batch of training queries {q1, q2, . . . , qB},
where B is the batch size. These queries serve as the prompts that the model will respond to, forming the
foundation for subsequent steps.

11

Implementation in TRL: In the GRPOTrainer class, this step is handled by the data loading mechanism
inherited from the Trainer class in the transformers library, customized with a special sampler. The
get train sampler method defines a RepeatRandomSampler that prepares batches in a unique way:

1 def _get_train_sampler(self) -> Sampler:

2 effective_batch_size = (

3 self.args.per_device_train_batch_size

4 * self.accelerator.num_processes

5 * self.args.gradient_accumulation_steps

6)

7 return RepeatRandomSampler(

8 data_source=self.train_dataset,

9 mini_repeat_count=self.num_generations,

10 batch_size=effective_batch_size // self.num_generations,

11 repeat_count=self.num_iterations,

12 seed=self.args.seed,

13)

• Dataset Source: The train dataset contains the prompts (stored under the key "prompt").

• Custom Sampling: The RepeatRandomSampler repeats each prompt num generations times (de-
noted G in the theory) within each batch. This ensures that for every unique prompt qi, there are G
instances in the batch, allowing the generation of multiple outputs later.

• Batch Size: The effective batch size accounts for the number of devices and gradient accumula-
tion steps, ensuring scalability across distributed setups. The number of unique prompts per batch is
effective batch size/G.

• Repetition Across Updates: The repeat count=self.num iterations parameter allows the same
batch to be reused across multiple optimization steps, a feature unique to GRPO for efficiency.

This setup guarantees that the batch is structured to support the generation of G outputs per query,
aligning with Step 2. The sampler’s design also ensures consistency across processes in distributed training,
which is crucial for reward normalization later.

Step 2: Sample G Outputs for a Single Query

What It Does in Theory: For each query q in the batch, the current policy πθold generates G different
outputs {o1, o2, . . . , oG}, where each oi is a sequence of tokens.

Implementation in TRL: This step occurs in the generate and score completions method, called
within prepare inputs during training:

1 def _prepare_inputs(self, inputs: dict[str, Union[torch.Tensor, Any]]) -> dict[str,

Union[torch.Tensor, Any]]:↪→

2 mode = "eval" if self.control.should_evaluate else "train"

3 if mode == "train":

4 buffer_index = self._step % self.args.gradient_accumulation_steps

5 buffered_inputs = self._buffered_inputs[buffer_index]

6 if self.state.global_step % self.num_iterations == 0 or buffered_inputs is None:

7 inputs = self._generate_and_score_completions(inputs)

8 self._buffered_inputs[buffer_index] = inputs

9 else:

10 inputs = buffered_inputs

12

11 self._step += 1

12 else:

13 inputs = self._generate_and_score_completions(inputs)

14 return inputs

Inside generate and score completions:

1 prompts = [x["prompt"] for x in inputs]

2 prompts_text = [maybe_apply_chat_template(example, self.processing_class)["prompt"] for example in

inputs]↪→

3 prompt_inputs = self.processing_class(

4 text=prompts_text, return_tensors="pt", padding=True, padding_side="left",

add_special_tokens=False↪→

5)

6 prompt_inputs = super()._prepare_inputs(prompt_inputs)

7 prompt_ids, prompt_mask = prompt_inputs["input_ids"], prompt_inputs["attention_mask"]

8

9 if self.args.use_vllm:

10 all_prompts_text = gather_object(prompts_text)

11 if self.accelerator.is_main_process:

12 ordered_set_of_prompts = all_prompts_text[:: self.num_generations]

13 with profiling_context(self, "vLLM.generate"):

14 completion_ids = self.vllm_client.generate(

15 prompts=ordered_set_of_prompts,

16 n=self.num_generations,

17 max_tokens=self.max_completion_length,

18 # ... other sampling parameters ...

19)

20 completion_ids = broadcast_object_list(completion_ids, from_process=0)

21 process_slice = slice(

22 self.accelerator.process_index * len(prompts),

23 (self.accelerator.process_index + 1) * len(prompts),

24)

25 completion_ids = completion_ids[process_slice]

26 completion_ids = [torch.tensor(ids, device=device) for ids in completion_ids]

27 completion_ids = pad(completion_ids, padding_value=self.processing_class.pad_token_id)

28 prompt_completion_ids = torch.cat([prompt_ids, completion_ids], dim=1)

29 else:

30 with unwrap_model_for_generation(self.model_wrapped, self.accelerator) as unwrapped_model:

31 prompt_completion_ids = unwrapped_model.generate(

32 prompt_ids, attention_mask=prompt_mask, generation_config=self.generation_config

33)

34 prompt_length = prompt_ids.size(1)

35 completion_ids = prompt_completion_ids[:, prompt_length:]

• Prompt Preparation: The prompts are extracted from the batch and tokenized into prompt ids.

• Generation Paths:

– With vLLM: If use vllm is enabled, the main process generates G completions per unique
prompt using the vLLM client. Since the batch has duplicates (from the sampler), it takes unique
prompts and generates num generations outputs, which are then distributed to all processes.

13

– Without vLLM: The model’s generate method produces one completion per prompt instance.
Because the sampler repeats each prompt G times, this results in G outputs per unique prompt
across the batch.

• Output Format: The completions are stored as completion ids, concatenated with prompt ids for
later processing.

Key Detail: The num generations parameter directly corresponds to G, controlling how many outputs
are sampled per query, fulfilling the theoretical requirement.

Step 3: Calculate Rewards and Advantages

What It Does in Theory: Each output oi is evaluated by a reward model to obtain rewards {r1, r2, . . . , rG}.
The mean r̄ and standard deviation σr are computed, and the advantage for each output is calculated as
Ai =

ri−r̄
σr+ϵ .

Implementation in TRL: This is also handled in generate and score completions:

1 rewards_per_func = torch.zeros(len(prompts), len(self.reward_funcs), device=device)

2 for i, (reward_func, reward_processing_class) in enumerate(

3 zip(self.reward_funcs, self.reward_processing_classes)

4):

5 if isinstance(reward_func, nn.Module):

6 texts = [p + c for p, c in zip(prompts, completions)]

7 reward_inputs = reward_processing_class(

8 text=texts, return_tensors="pt", padding=True, padding_side="right",

add_special_tokens=False↪→

9)

10 reward_inputs = super()._prepare_inputs(reward_inputs)

11 with torch.inference_mode():

12 rewards_per_func[:, i] = reward_func(**reward_inputs).logits[:, 0]

13 else:

14 reward_kwargs = {key: [example[key] for example in inputs] for key in inputs[0] if key !=

"prompt"}↪→

15 output_reward_func = reward_func(prompts=prompts, completions=completions,

**reward_kwargs)↪→

16 output_reward_func = [r if r is not None else torch.nan for r in output_reward_func]

17 rewards_per_func[:, i] = torch.tensor(output_reward_func, dtype=torch.float32,

device=device)↪→

18

19 rewards = (rewards_per_func * self.reward_weights.to(device).unsqueeze(0)).nansum(dim=1)

20

21 mean_grouped_rewards = rewards.view(-1, self.num_generations).mean(dim=1)

22 std_grouped_rewards = rewards.view(-1, self.num_generations).std(dim=1)

23

24 advantages = rewards - mean_grouped_rewards.repeat_interleave(self.num_generations, dim=0)

25 if self.args.scale_rewards:

26 advantages = advantages / (std_grouped_rewards.repeat_interleave(self.num_generations, dim=0)

+ 1e-4)↪→

• Reward Computation: For each completion, rewards are calculated using multiple reward funcs

(e.g., models or custom functions). The total reward ri is a weighted sum of individual rewards,
matching the theoretical ri = α · accuracy score + β · format score.

14

• Grouping: Rewards are reshaped into groups of size G (self.num generations) to compute per-
group statistics.

• Advantages: The advantage Ai is computed as ri − r̄, and if scale rewards is True, it’s normalized
to ri−r̄

σr+10−4 , directly implementing the formula from Step 3.

The group-based normalization is a hallmark of GRPO, enabling relative comparisons within each query’s
outputs.

Step 4: Compute the Surrogate Loss

What It Does in Theory: This step computes the probability ratio ratioi,t =
πθ(oi,t|q,oi,<t)

πθold
(oi,t|q,oi,<t)

, the clipped

term g(ϵ, Ai), and the per-token loss Li,t = min(ratioi,t ·Ai, g(ϵ, Ai)). The total loss includes a KL penalty:

Ltotal(θ) =
1
G

∑G
i=1

1
|oi|

∑|oi|
t=1 Li,t − βDKL[πθ ||πref].

Implementation in TRL: This is implemented in the compute loss method:

1 @profiling_decorator

2 def compute_loss(self, model, inputs, return_outputs=False, num_items_in_batch=None):

3 prompt_ids, prompt_mask = inputs["prompt_ids"], inputs["prompt_mask"]

4 completion_ids, completion_mask = inputs["completion_ids"], inputs["completion_mask"]

5 input_ids = torch.cat([prompt_ids, completion_ids], dim=1)

6 attention_mask = torch.cat([prompt_mask, completion_mask], dim=1)

7 logits_to_keep = completion_ids.size(1)

8

9 per_token_logps = self._get_per_token_logps(model, input_ids, attention_mask, logits_to_keep)

10

11 if self.beta != 0.0:

12 ref_per_token_logps = inputs["ref_per_token_logps"]

13 per_token_kl = (

14 torch.exp(ref_per_token_logps - per_token_logps) - (ref_per_token_logps -

per_token_logps) - 1↪→

15)

16

17 advantages = inputs["advantages"]

18 old_per_token_logps = inputs["old_per_token_logps"] if self.num_iterations > 1 else

per_token_logps.detach()↪→

19 coef_1 = torch.exp(per_token_logps - old_per_token_logps)

20 coef_2 = torch.clamp(coef_1, 1 - self.epsilon_low, 1 + self.epsilon_high)

21 per_token_loss1 = coef_1 * advantages.unsqueeze(1)

22 per_token_loss2 = coef_2 * advantages.unsqueeze(1)

23 per_token_loss = -torch.min(per_token_loss1, per_token_loss2)

24 if self.beta != 0.0:

25 per_token_loss = per_token_loss + self.beta * per_token_kl

26 loss = (per_token_loss * completion_mask).sum() / completion_mask.sum()

27 return loss

1 def _get_per_token_logps(self, model, input_ids, attention_mask, logits_to_keep):

2 # We add 1 to `logits_to_keep` because the last logits of the sequence is later excluded

3 logits = model(input_ids=input_ids, attention_mask=attention_mask,

logits_to_keep=logits_to_keep + 1).logits↪→

4 logits = logits[:, :-1, :] # (B, L-1, V), exclude the last logit: it corresponds to the next

token pred↪→

15

5

6 input_ids = input_ids[:, -logits_to_keep:]

7 # For transformers<=4.48, logits_to_keep argument isn't supported, so here we drop logits

ourselves.↪→

8 # See https://github.com/huggingface/trl/issues/2770

9 logits = logits[:, -logits_to_keep:]

10 # Divide logits by sampling temperature.

11 # compute logprobs for the input tokens

• Log Probabilities: The get per token logps method computes per-token log probabilities for the
current model (per token logps) and, if needed, the reference model (ref per token logps).

• Probability Ratio:

– ratioi,t is calculated as exp(per token logps− old per token logps), stored in coef 1. This is the

exponential of the log probability difference, equivalent to
πθ(oi,t)

πθold
(oi,t)

.

• Clipped Term:

– g(ϵ, Ai) is implemented as
coef 2 = torch.clamp(coef 1, 1 - self.epsilon low, 1 + self.epsilon high)multiplied
by advantages, ensuring the ratio stays within [1− ϵ, 1 + ϵ].

• Per-Token Loss:

– per token loss1 = coef 1 * advantages is the unclipped term.

– per token loss2 = coef 2 * advantages is the clipped term.

– per token loss = -torch.min(per token loss1, per token loss2) computes Li,t, negated be-
cause the training loop minimizes the loss, while GRPO aims to maximize the surrogate objective.

• KL Penalty: If beta != 0, the KL term is approximated as exp(ref logps − logps) − (ref logps −
logps)− 1, added to the loss scaled by beta.

• Total Loss: The final loss averages Li,t over all tokens, masked by completion mask, matching
1
G

∑G
i=1

1
|oi|

∑|oi|
t=1 Li,t.

Why the Negative Sign?: In RL, we maximize the surrogate objective, but the Trainer minimizes
the loss. Thus, Li,t is negated to align with this convention.

Key Detail: The KL penalty uses an approximation rather than the exact DKL, which simplifies compu-
tation and is effective for small policy changes. The KL divergence penalty βDKL[πθ ||πref] is approximated

per token as exp(x)− x− 1, where x = log
πref(oi,t)
πθ(oi,t)

. For small policy updates, this expands to 1
2x

2 +O(x3),

mirroring the second-order behavior of the KL divergence for the chosen token oi,t. This approximation
avoids summing over the full vocabulary, balancing computational efficiency with effective regularization in
GRPO.

Step 5: Backpropagate and Update the Policy

What It Does in Theory: Compute the gradient ∇θLtotal(θ) and update the policy parameters using an
optimizer: θ ← θ − η∇θLtotal(θ).

Implementation in TRL: This step leverages the Trainer class’s training loop, with no explicit override
in GRPOTrainer for the update itself:

• Loss Computation: The compute loss method returns the loss, as shown above.

• Training Loop: In the Trainer.train method (inherited from transformers), the following occurs:

1. Forward Pass: Calls compute loss to get the loss.

16

2. Backward Pass: Executes loss.backward() to compute gradients.

3. Optimization: The optimizer (e.g., Adam, configured via optimizers in init) updates the
parameters using the learning rate η (e.g., learning rate=5e-6 from your tutorial).

Code Context: While not explicitly shown in GRPOTrainer, the inherited training step can be concep-
tualized as:

1 # From transformers.Trainer.train (simplified)

2 for step, inputs in enumerate(epoch_iterator):

3 inputs = self._prepare_inputs(inputs)

4 loss = self.compute_loss(model, inputs)

5 loss = loss / self.args.gradient_accumulation_steps

6 loss.backward()

7 if (step + 1) % self.args.gradient_accumulation_steps == 0:

8 self.optimizer.step()

9 self.optimizer.zero_grad()

• Gradient Accumulation: If gradient accumulation steps > 1, the loss is scaled and gradients
are accumulated before the update, enhancing efficiency.

• Parameter Update: The optimizer applies θ ← θ − η∇θLtotal, where η is set in GRPOConfig.

This step finalizes the policy improvement, adjusting token probabilities to favor higher-reward outputs
while maintaining stability via clipping and KL regularization.

Summary of the Mapping

Here’s a concise mapping of all steps to the GRPOTrainer code:

1. Step 1: get train sampler prepares batches with repeated prompts.

2. Step 2: generate and score completions samples G outputs per query.

3. Step 3: generate and score completions computes rewards and advantages.

4. Step 4: compute loss calculates the surrogate loss with clipping and KL penalty.

5. Step 5: Inherited Trainer training loop backpropagates the loss and updates the policy.

5 Conclusion

GRPO empowers large language models with specialized skills, controlled outputs, and enhanced reasoning,
surpassing traditional fine-tuning by optimizing multiple responses via a reward model. This paper delivers
a concise yet thorough exploration of GRPO, from theoretical steps to practical implementation in tools like
TRL. No single prior work combines its theory, practice, and nitty-gritty details—leaving gaps we now fill.
By clarifying how GRPO achieves deep expertise, style precision, and debiasing, this guide equips readers
to apply it confidently, advancing LLM performance for tailored, impactful use cases.

References

[1] HuggingFace. GRPO Trainer in TRL Library. Available at: https://github.com/huggingface/trl/

blob/main/trl/trainer/grpo_trainer.py. Accessed: April 1, 2025.

17

[2] HuggingFace and UnslothAI. Colab: HuggingFace Course - Gemma3 (1B) - GRPO. Available at:
https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/HuggingFace%

20Course-Gemma3_(1B)-GRPO.ipynb. Accessed: April 1, 2025.

[3] DeepSeek-AI et al. (2025). DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via Reinforcement
Learning. arXiv:2501.12948.

[4] DeepSeek-AI et al. (2025). DeepSeek-V3 Technical Report. arXiv:2412.19437.

[5] Hugging Face, Understanding the DeepSeek R1 Paper, Open R1 for Students. Available at: https:

//huggingface.co/learn/nlp-course/chapter12/3?fw=pt (Accessed: April 2, 2025).

18

